* Posts by Myles Nagop

1 publicly visible post • joined 14 Jul 2011

Heat sink breakthrough threatens ventblockers

Myles Nagop
WTF?

Scientists at play - mind the gap

Very dubious about ALL of the claimed benefits, but, since the sponsor is after all the US Department of Energy/Sandia National Labs, let's focus on the topical " + Provides increased energy efficiency". Their "drastic improvement in aerodynamic efficiency" supposedly "translates to an extremely quiet operation", no less. The report and patent dangle even more prospects of violent and dramatic upheavals to the state of the art in CPU coolers.

Most CPU coolers use an axial fan for good reason: axial fans give a high flowrate and small pressure rise, which is appropriate to the duty of CPU and casing fans. A typical axial 80 - 120 mm CPU cooler fan absorbs 1.8 - 3.6 W peak power (~0.15 - 0.30A at 12V). Centrifugal (radial) fans are generally used for low flow, high pressure duties.

What we see here is a centrifugal fan with (lots of) thick, cantilevered vanes and no top shroud. It should be good to absorb at least as much power as a similarly sized axial: however, it is very unlikely to function at all effectively in pumping, and nothing like as efficiently, as a properly designed centrifugal. Poor aerodynamics generally also lead to flow-induced noise. And BTW, there will be pesky boundary layers all over the front and back surfaces of the numerous vanes, happily producing friction and absorbing power. For a 100 mm diameter fan, even at 5,000 RPM, these BLs will be nice and thick, helping to block the radial flow in the channels between the vanes.

Then, on rear face of the impeller, there is that magic fluid-filled gap between the rotor backplate and the stationary base plate with the heat source. The flow patterns in this space are complex, and depend on stuff like scale, shape, speed of rotation, fluid properties, surface temperature distributions... Leaving the complexities of the heat transfer aside, there will also be friction acting on the rotor, which requires additional power from the fan motor. Given good data (*) - yes Sandia, they're already out there - you can calculate this windage, and for the Sandia specs (100 mm diameter, 5,000 RPM, 25-micron air gap) it comes out around 2.9 - 3.6W ( air temperatures 20 - 100C; or about 10 - 12W for the 5-micron gap they seem to aspire to for better heat transfer. This ignores sealing issues between the rotor and base plate.

So the motor power requirement of the Sandia Cooler could be roughly at least DOUBLE, maybe FOUR TIMES, that of typical state-of-the-art CPU cooler. There's also the niggling issue of where that friction heat in the air-gap goes - it ADDS to the thermal load that must be transferred out to the impeller and dumped into your room.

That relatively heavy metal impeller (all those fat blades) and high rotation speed, would need balancing to avoid vibration and possible contact or rubbing. Also, both to prevent vibration and hot spots, maintaining a uniform 5-micron cavity gap would be important (and tricky).

"Simple, rugged, cost-competitive" - "Dramatic increase in cooling performance without resorting to exotic methods???" - NOT.

Hard to discern real progress there for CPU cooling, no matter how you paint it, and IMHO apparently not a good technical case for throwing more cash into.

* http://www.esdu.com/graphics/dataitem/di_07004.htm -- Engineers with hard-hats only, please