back to article Italian boffins to robo-grapple space junk

Italian scientists have devised what they reckon is a viable plan to deal with the menace of large chucks of space debris: a robotic satellite which will grapple the junk, attach a propellant kit and dispatch it to a fiery death in the Earth's upper atmosphere. Marco Castronuovo and colleagues from the Agenzia Spaziale …

COMMENTS

This topic is closed for new posts.
  1. TRT Silver badge
    Happy

    Wasn't this issue...

    This was the premise for an episode of Gerry Anderson's UFO in 1969!

    1. Graham Marsden
      Black Helicopters

      I was thinking...

      ... more of You Only Live Twice :-)

      Launching the rocket from an extinct volcano isn't mandatory, but would be really cool!

      (Helicopter icon is the nearest thing to Little Nellie)

  2. Tom Chiverton 1
    Black Helicopters

    Umm

    Umm... he's about to find out some of those 'large chucks of space debris' are actually just powered down bits of military kit in sleeper mode...

    1. Anon E Mus

      Good

      That in itself would be a good reason to de-orbit them.

  3. Christoph
    Holmes

    We already have a solution

    Send up Small Clanger in the music boat to reel them in with a magnet on the end of a fishing line.

  4. The last doughnut
    Happy

    A better plan

    Send up an Italian robotic engineer. At each rendevous-with-junk, the robot waves its arms around wildly for up to half an hour whilst emitting a continuous stream of rubbish. The space junk then voluntarily de-orbits itself out of sheer incomprehensive overload.

  5. Stratman
    Mushroom

    title

    Can it rid us of the pestilence that is Sky?

  6. John Smith 19 Gold badge
    Boffin

    Italy may know something about this.

    Look at "Made in " label on half of the modules of the ISS.

    Of course it does nothing about the umpteen paint chips, nuts bolts (and at least 1 ISS toolbag) but it's a start.

    Getting a substantial package to 850Km is still pretty challenging

    1. Steve the Cynic
      FAIL

      Altitude

      Good Lord, not that again! No, getting large objects to high orbit is well understood.

      In fact, conspiracy nutcakes aside, the US sent three men and a tub (OK, a large, elaborate multi-part tub, but you get the point, right?) to an altitude of around 240,000 miles in the late 1960s, and we surely understand rocketry better now.

      Well, I hope we understand it better now, because if not, what have all the rocket scientists been doing for the last 30 years?

      1. ravenviz Silver badge
        Stop

        Re: Altitude

        I don't think we understand it any better, unless the laws of ballistics* have changed?!

        *read physics

    2. BristolBachelor Gold badge

      @John

      Normally, you are spot on the money on this subject, so sorry to have to mention that the errant hand-bag re-entered a while ago.

      and yes, 850km is quite challenging. i don't know how much Ariane5 can get up there (I doubt it's mentioned in the user guide!). i'm guessing that this beastie will need a lot of fuel for delta-V changes to catch the different bits, then manouvring to match thier spinning to be able grapple them without the arm being ripped off, then attitude control.

      I also expect that the attached payload might need more than just a solid-fuel kick motor; some attitude control may be needed to keep the rocket pointed in the right direction while it fires!

      Yes, this could be an interesting project.

    3. Mike Flugennock

      drifting ISS EVA tool bag

      "Of course it does nothing about the umpteen paint chips, nuts bolts (and at least 1 ISS toolbag) but it's a start."

      Actually, as I recall, the tool bag's orbit eventually decayed and the tool bag re-entered on its own.

      The nuts and bolts, though small, are still traveling at least 17,000 mph and could cause quite a bit of damage when striking a spacecraft. Perhaps a magnet...?

      1. annodomini2
        FAIL

        1. It's all relative 2. Material!

        "The nuts and bolts, though small, are still traveling at least 17,000 mph and could cause quite a bit of damage when striking a spacecraft. Perhaps a magnet...?"

        1. Relative velocity, it's when they cross orbital paths that the problem is a major one.

        2. Most nuts and bolts used in space craft are either aluminium alloy or titanium alloy, both of which are not strongly magnetic.

  7. Anonymous Coward
    Paris Hilton

    This is going to be a challenge

    Many of these pieces will never have been designed to be grappled, so getting an attachment is going to be difficult, and they will probably be tumbling having never had, or have lost attitude control.

    Good luck to them and it sounds like a fun project to work on.

    (Paris because she is designed for easy grappling and has attitude).

  8. Disco-Legend-Zeke
    Pint

    Can We Trust...

    ...these objects to completely burn up?

    I see nothing in the article about calculating the probability of a given piece making it all the way to Terra firma.

    My beer experience would be totally ruined by a piece of space junk falling into the glass.

    1. Mike Flugennock

      re: can we trust...

      "I see nothing in the article about calculating the probability of a given piece making it all the way to Terra firma."

      I'm sure the Italian team's taken that into account. Simply time your retrofire so that the re-entry trajectory ends in the middle of an ocean someplace.

  9. Eugene Goodrich
    Paris Hilton

    Inconsistent speed?

    [[ identified over 60 major threats at an altitude of roughly 850km, the BBC explains. Two-thirds of these weigh in at over three tonnes apiece, and many are whizzing along at up to 27,000 km/h (16,800 mph).]]

    Shouldn't all the various things orbiting at a given approximate altitude be whizzing along at about the same speed, as long as gravity and the dimensions of the Earth are relatively constant for all the various things doing the whizzing?

    1. BristolBachelor Gold badge

      speeds

      yes and no. If they were all in a circular orbit at the same altitude, then yes, all the speeds would be the same. However, they may not be in perfectly circular orbits or at exactly the same altitude. I seem to remember the the orbits of the rocket bits are not circularised to get better efficiency for whatever they launched. I expect that in non-circular orbits, the speed various throughtout the orbit.

      I can't be much more help because once the thing is up there working, my job is over: other people look after driving them; I just know the basics to understand what to build.

      1. annodomini2
        Thumb Up

        Missed something

        Also assumes they are going in the same direction, remember in space you can move in 3 dimensions!

        Most rocket bodies end up in their orbital insertion positions with non-circular orbits as you suggested, it allows more mass to be inserted into a higher orbit.

  10. peyton?
    Happy

    Get creative

    Point this junk at the moon - maybe we'll end up with enough materials to finally start a lunar base.

    1. annodomini2
      FAIL

      lunar orbit

      lunar orbit/impact would take even more fuel.

      1. peyton?
        Holmes

        More fuel

        Than sending it up from the Earth? Orly?

        In other news: see icon

  11. Steve Medway
    Mushroom

    Who on earth would try an Italian when it comes to 'waste management'?

    Italy, The Camorra, Naples & Toxic Rubbish.......

    If the Italians can't sort out the trash in one of the own cities why the hell trust them with space debris?

  12. Mike Flugennock

    actually, now that I think of it...

    ...the Apollo 10 S-IVB stage -- the Saturn V third stage used to break out of Earth orbit and place the Apollo on a lunar trajectory -- is still waaaayyy out there in a heliocentric orbit and made a close approach to Earth recently; it'd be interesting to dispatch a robot probe to rendezvous on its next close approach and get some high-res images to see what kind of shape its in... just out of sheer curiosity.

  13. Stuart Halliday
    Go

    Don't tell the historians

    Better be quick before someone slaps a preservation order on these on historical grounds. ;)

  14. Rattus Rattus

    I like...

    ...a mix of this and the Japanese idea. Use the Italians' satellite to deorbit the larger pieces, then deploy a large aerogel catcher from another satellite to scoop up as much smaller stuff as possible before firing it's jets to deorbit the lot.

  15. Jimbo in Thailand
    Joke

    Brace yourself for the real solution...

    There's no need for grappling hooks and propellent packs... no sir. All that's required are some pre-cut strips of Duct tape, and a stack of fresh US dollar bills in various denominations loaded into a dispenser aboard the robotic satellite. Upon rendezvous a single one dollar bill is affixed to the small size unwanted space junk with a Duct tape strip (sticks to anything) then it's on to the next chunk of space debris. Larger chunks will require larger denominations. The sinking dollar will do the rest.

  16. Mips
    Childcatcher

    "many are whizzing along at up to 27,000 km/h "

    You journalist never learn. These are orbiting satellites. What else do you expect the speed to be?

  17. ian 22
    Mushroom

    Meh!

    A more spectacular plan is to boost the offending cosmo-rubbish into the positron belt, where it should disappear in a flash.

  18. Martin Budden Silver badge
    Alien

    Mr

    I still like my idea better: an array of Archimedes mirrors. (There is an extraterrestrial explanation for all this and here it is...)

    Send up a thousand or so identical pointable satellite mirrors. They are small, probably massing less than 1 pound each, so you can fit them all into one small launch vehicle easily (with room to spare for someone else's project too, this helps keep launch costs down). The design of each individual satellite is as follows:

    A large triangular sheet of reflective foil, supported by three poles (one to each corner of the foil), making an effective flat mirror surface. The non-foil ends of the poles are joined to a central unit (sprung hinge joins of course, to allow for folding into the launch vehicle).

    The central unit contains three small electric motors mounted at right-angles: when spun they change the attitude of the entire craft to point the mirror in any direction. The central unit also contains a processor, a receiver for *cough* receiving instructions from Terra Firma, and any other necessay gadgetry. There will also be a small solar panel to provide power to the motors and electronics (and a small back-up battery for when passing through the Earth's shadow).

    How does it work? The many small satellite mirrors are in orbits all around the Earth. Rotate a couple of hundred of them to reflect sunlight onto a piece of space junk, and it gets very hot and vapourises. Job done, re-point at the next piece of junk, and so on.

    1. annodomini2
      FAIL

      Title we don't need no stinking title

      Ok so you don't have one big bit, but you have thousands of little bits going much faster than they did before.

      1. Martin Budden Silver badge
        Megaphone

        Mr

        Yes, many many little bits, teensy-weensy atoms and small molecules: it's called GAS. Not going to cause any damage whatsoever.

    2. Yag
      Devil

      "Job done, re-point at the next piece of junk, and so on."

      Point it to <insert your local overlord palace here> then :)

This topic is closed for new posts.

Other stories you might like