back to article EXPOSED: bizarre quantum sibling LOVE TRIANGLE

University of Waterloo boffins have demonstrated a three-way quantum entanglement that shows quantum non-locality can work with more than two particles.* The regulars of quantum physics, Bob and Alice, and the interloper Charlie, had an appropriately trailer-trash setting, but alas saw precious little one-on-one photon action …

COMMENTS

This topic is closed for new posts.
Bronze badge

I read that as the Univesity of Woolloomooloo

and couldn't understand why the experiment didn't involve Bruce and Sheila.

6
0
Bronze badge
Coat

Re: I read that as the Univesity of Woolloomooloo

No, it's the University of Waterloo ....

famous for the toilet-wall graffito "this is where Napoleon pulled his bone apart".

4
0
Bronze badge
Facepalm

@Francis Boyle -- Re: I read that as the Univesity of Woolloomooloo

Bruce and Sheila?

Crikey, you're beginning to show your age.

BTW, I once briefly lived in that 8-Os 'establishment', the pie and peas were good (locals will understand the connection).

0
0
Silver badge

Meanwhile, elsewhere ... with Angels and Vultures of Dark Web Enterprise, Black Watch AIdVenturing

Nonlocality describes the ability of particles to instantaneously know about each other’s state, even when separated by large distances. In the quantum world, this means it might be possible to transfer information instantaneously – faster than the speed of light. This contravenes what Einstein called the "principle of local action," the rule that distant objects cannot have direct influence on one another, and that an object is directly influenced only by its immediate surroundings. …. https://uwaterloo.ca/news/news/experiment-opens-door-multi-party-quantum-communication

In quantum communications worlds, where secret intelligence and sensitive information transfers take place, there is no question nor doubt that faster than the speed of light virtually instantaneous thought transfer, is possible, and is in every case, the default mechanism and nothing at all exceptional and particular or peculiar.

Such then renders what Einstein called the "principle of local action," the rule that distant objects cannot have direct influence on one another, and that an object is directly influenced only by its immediate surroundings, null and void/fundamentally incorrect.

One does wonder when one has a ponder what else Einstein’s thought transfers got so fundamentally wrong, for it is not as if he was able to share them with any sizeable and more knowledgeable peer group for systemic error correction in his day, whereas nowadays with ICT can one practically instantly share anything and everything with everyone and anyone internetworking in Global Information Grids with Global Operating Devices on SMARTR IntelAIgent Systems which present the future with Media Command for to Control Live Operational Virtual Environments ……. aka Realities.

Energy via Media Command and Control Squared‽ :-)

2
3
Anonymous Coward

Re: virtually instantaneous thought transfer.

"In quantum communications worlds .. there is no question nor doubt that faster than the speed of light virtually instantaneous thought transfer, is possible"

Could you give us a practical demonstration of instantaneous thought transference?

1
0
Paris Hilton

I know I'm terminally confused....

... when I find amanfromMars easier to understand than the article he comments on.

4
0
Coat

The subtitle...

...somehow got me thinking of Tom Lehrer's "I got it from Agnes":

"I love my friends and they love me

We're just as close as we can be

And just because we really care

Whatever we get, we share!

I got it from Agnes

She got it from Jim

..."

0
0
Silver badge
Boffin

The what now...?

University of Waterloo boffins have demonstrated a three-way quantum entanglement transferring information faster than the speed of light.

While admittedly most of quantum theory flies way above my head, I was under the impression that entanglement still does not allow FTL information transfer. If that's not so, I'd really like to see it confirmed somewhere reputable, since the only place I know to look - Wikipedia - apparently still begs to differ (http://en.wikipedia.org/wiki/Faster-than-light#Quantum_mechanics).

4
0
Bronze badge

"transferring information faster than the speed of light"?

The correlation that occurs with entanglement is instantaneous and does not depend on temporal or spatial separation, but that isn't quite the same as information transfer. Any data transmission is still limited by the velocity of light.

At least that was the case the last time I could understand it.

3
0
Boffin

No, this doesn't undermine Einstein

No, there is not "information transfer" faster than the speed of light. The effect here seems to be non-local, but we've known for a long time that QM is almost certainly non-local*.

In order to transfer information you first have to entangle the particles, then separate them (slower than light), then do your experiment, then bring the results back together to compare them (slower than light).

The subtlety that many people miss, including the Uni of Waterloo's PR department, is that the entanglement results appear completely random when considered separately, and there is no information /until you bring both sets of results together/ and measure the correlation between them. This last step is still slower than the speed of light.

So no, this doesn't undermine Einstein. If anything, it underlines how brilliant he was to deduce such a basic principle of the universe even before QM was understood as it is today.

*There's still a slim hope that locality can be rescued -- even Bell's Theorem doesn't completely rule it out -- but it does require other sacrifices in our understanding of reality that are probably even worse.

6
0
Silver badge
WTF?

Re: No, this doesn't undermine Einstein

Confused!!

I always thought that after entanglement, 2 particles could be seperated (at < c ), and then any change in one particle is instantaneusly happening also in the other particle. But information isn't being transmitted between the 2 (at least not at any speed > c ).

I saw it the same way as synchronising 2 clocks and taking them to different places. The hands on both clocks are instantaneously mirroring one another but no information is being transferred between the 2.

I'm not sure exactly what I'm not understanding here but it seems like I've got some fundamentals wrong

0
0
Bronze badge

@ Carl Zetie -- Re: No, this doesn't undermine Einstein

...before QM was understood as it is today

Perhaps Feynman would call that an oxymoron. One struggles with squiggles on a page, Ψ, H etc., and with a bit of dexterity one may learn to manipulate them. 'Understanding' is perhaps another matter. ;-)

...but it does require other sacrifices in our understanding of reality.

Re Bell, what specifically?

0
0
Bronze badge

Re: No, this doesn't undermine Einstein

@ James Micallef - Re :- "I saw it the same way as synchronising 2 clocks and taking them to different places. The hands on both clocks are instantaneously mirroring one another but no information is being transferred between the 2."

Didn't Mr E also have something to say about clock hands when the clocks were taken to different places?

0
0

it's many worlds, innit

the moment of entanglement is the branch point - one for each quantum outcome. the randomly selected experiment determines which branch is observed. the entangled entities don't need to communicate with each other.

1
1

No information transfer faster than speed of light

What this and other older experiments demonstrate is that QM is inherently non-local. Incredibly QM manages to be non-local yet prevents information transfer using the non-local nature. This is amazing when you think about it.

The non-locality also means it is not necessarily true that QM is inherently random, non-local hidden variables could be present and depending on your personal bias this may seem more or less likely than th3 traditional view.

0
0
Bronze badge
Childcatcher

Re: No information transfer faster than speed of light

I can guess the answer to this, but this subject is simultaneously fascinating and way outside my area of expertise. Is it possible to know from one of a set of entangled objects if entanglement has been broken at the other end at the time it occurs? Is there a method for doing this other than comparing their respective states? If so, wouldn't the fact that entanglement had been broken constitute information being transferred?

0
0
Silver badge

Bah!

"University of Waterloo boffins have demonstrated a three-way quantum entanglement transferring information faster than the speed of light."

Prediction: No they haven't.

1
0

Um....

So the following is wrong ?

Take Particles A and B

Entangle them

Move them apart

Change the "Spin" on particle A

Particle B "Spin" also changes at the same instant

Is this (admittedly super simplified) what happens with quantum entanglement ?

0
0
This topic is closed for new posts.

Forums