Feeds

back to article Optical filters head to Germany for Solar Orbiter build

The European Solar Orbiter project has taken another step towards launch-readiness, with Australia's CSIRO delivering the last of the optical filters that the orbiter needs to image the sun. The spacecraft is due to launch in 2017, and will adopt an orbital distance similar to that of Mercury, which is closer than other …

COMMENTS

This topic is closed for new posts.
Silver badge

Hope they didn't

Send it with DHL

(i'm still missing a xmas prezzy)

1
1
Gold badge
Thumb Up

Using Iron vapour to read the magentic state *optically*

Neat.

CSIRO is not to be underestimated.

4
0

Re: Using Iron vapour to read the magentic state *optically*

Unless you are arse technica and label them as a clear patent troll since they 'don't produce anything themselves'.

2
0
Gold badge
Happy

OK, so the satellite's got it's sunglasses. Who's building the hat?

1
0
Silver badge

Don't forget teh sunscreen.

1
0

They won't need sunscreen if the mission is only conducted at night.

0
0
Bronze badge

Spaceflight development money is rarely wasted

Electronically tuneable filters. There has to be a applications for that on Earth.

It's just goes to show how space science can drive technology advancement

3
0
Bronze badge

Re: Spaceflight development money is rarely wasted

I was just thinking, as I read the article, "I wonder how much Carl Ziess will pay for these new techs."

Have an up-vote.

0
0

So, not something I'll find down my local Jessops then?

0
0
Silver badge

Just give it a couple of years...

0
0
Bronze badge

Interesting, but

helping in turn to predict the behaviour of solar winds and geomagnetic storms, which will feed into climate models

What? I thought only carbon dioxide emissions could affect the climate.

1
0
Boffin

Re: Interesting, but

Er... nope. Solar irradiation is a major factor for several reasons, including generation of atmospheric water vapour, which is a greenhouse gas. So is methane, which is about 20 times more efficient than CO2 as a greenhouse gas.

Mind you, the quote from the article was not about global warming models, but about climate models. I.e., what they use to make long-term weather forecasts, among other things.

2
0

Re: Interesting, but

Whooosh...

1
0
Bronze badge

Don't understand

"its nominal centre wavelength of 617.3433 nm (accurate to one thirtieth of a nanometre)"

If the accuracy is 1/30th, why give us the wavelength down to 1/10000th?

0
0
Boffin

Re: Don't understand

"If the accuracy is 1/30th, why give us the wavelength down to 1/10000th?"

Simple. That is the nominal wavelength the filter was designed for. The accuracy is + or - one thirtieth nanometer. So, we have a theoretical value for what we're shooting at, and the accuracy is, as said, plus or minus one thirtieth nm. Meaning that while the design value is accurate down to 1/10000th, the actual value achieved may be anywhere near there within plus or minus those 1/30th nm.

1
0
This topic is closed for new posts.