Feeds

back to article Self-healing chips survive repeated LASER BLASTS

Modern high-speed integrated circuits can be fragile things. Even a single fault can often render them completely inoperable. But a team of researchers at the California Institute of Technology (Caltech) says it has developed an "immune system" for chips that can allow circuits to route around problems and keep working in the …

COMMENTS

This topic is closed for new posts.
Silver badge

Space exploration was the first thought that came to mind. Could be very useful in such a hostile environment.

4
0
Anonymous Coward

Their approach of cycling through all the states to find the most appropriate won't scale particularly well. log2(262144) is only 18. There are 18 individual stateful objects on that chip, and the maximum re-routing time was 0.2s. Even the relatively modest CPUs on board the Curiosity rover sport over ten million transistors. Quite a lot of states.

0
0
Silver badge

True, AC, but for the sort of space exploration we are doing at the moment, time is not of the essence. Since anything that breaks on the various rovers and surveyors is going to stay broken with current tech, this means that a mission can be resumed after the self-healing has taken place.

0
0
Silver badge

Re: "Quite a lot of states."

True. However those same 10 million transistors can probably be replicated several times over onto a suitable sheet of silicon these days. If "sensors" can be replaced by "testing units", maybe you can have a 32-core CPU with instructions replicated N times for redundancy and an automatic failover amongst various CPU cores and sub-components of cores, all in one package?

Now that could be useful on Earth, let alone Mars.

1
0

TERMINATOR

AWESOME! ROTM is near!

1
0
Silver badge
Flame

But...

... what happens if it's the ASIC logic that gets zapped ?

0
0

Re: But...

Or more importantly, how well does it cope with being hit with something as primitive as a lump hammer?

2
0

Interesting, but...

....what heals the self-healing core?

1
0

Re: Interesting, but...

Nano-assemblers create minute quantities of duct-tape.

8
0
Joke

I think they released this story to the press three weeks early.

0
0
Mushroom

I WILL USE THESE CHIPS TO MAKE SATAN COME TO EARTH

and you will ALL finally suffer

0
0
Anonymous Coward

Infinite improbability...

And what if the laser hits the ASIC? What then eh?

0
0
Bronze badge

More to the point...

What if it actually worked on a computers innards?

We'd (in theory) never need to replace that hardware. I do wonder if the company would live long enough go out of business due to having saturated it's market, or if it would be destroyed by the rest of the industry taking it out in self preservation.

0
0

Interesting, but

Routing around physical damage from a laser is what I understand from TFA. Modern processors (or SoC) are tiny, and tend to be surrounded by laser reflecting heatsinks, gold, silver and tin contact material. You'd have to be pretty accurate with your laser to cause the self healing to initiate, assuming that the stuff you lasered through, to get to the chip, was also capable of self healing.........

At Ferranti in the 70's & 80's EMP proof processors were developed for use in computers, comms equipment & targeting devices. Those babies could carry on during & after a nuclear airblast. However it was accepted that if the equipment was close enough to be physically damaged....

win lose

___ ___

lose win

1
1

Ivor Catt should get a mention

http://en.wikipedia.org/wiki/Ivor_Catt#Wafer_scale_integration

1
0
Anonymous Coward

Re: Ivor Catt should get a mention

Iv'a dog, so what? :-)

3
0
Silver badge
Thumb Up

Re: Ivor Catt should get a mention

Ouida Dogg, I seem to recall...

1
0

Fewer Components - Less Power

My guess is that the damaged chip uses less power because it has fewer components to consume power than an undamaged chip does. Of course, this also means the chip is less powerful. That should be expected; all those parts are there for a reason, one would think, so destroying a few must result in a performance trade-off somewhere.

0
0
Anonymous Coward

Questionable assumptions...

This assumes a chip is homogeneous in design and the loss of any given unit would fine. So redundant units would probably be necessary in many cases. At which point one wonders if it would be better to just have redundant chips and the self healing ASIC(s) in separate chips at mission critical areas.

As others pointed out the self healing ASIC is a single point of failure. Perhaps it would be better to have this ASIC's functionality spread throughout the chip. But again this would lead to considerable complexity. Chip size, heat, and manufacturing defects would probably rise. i.e. bigger target, more cooling, but at least the chip could 'fix' it's own defects right?

This isn't really healing at all. It's just internal failover whose premise works best on simple chip designs. As I suggested before an external failover mechanism is probably more ideal for more complex setups.

What we need is real self healing via nanomachines and temporary failover. Don't see that being around the corner any time soon. Or IC's made out of organics.

4
0
Boffin

Re: Questionable assumptions...

Well, not so much. Take an x86 as an example.

A quad core I5 has multiple floating point units. It, also, has more than one cache. Well, not more than one L2, no. But Intel can, an do, disable some of it - to make an I3. So, yes. We could route around these (eventually) defective parts.

No, it wouldn't survive a (real live) laser blast - but would keep ticking even with half L2 and/or one less floating point unit.

Could be handy in servers and hardware in hard to get places...

0
0
Boffin

Exactly my thoughts. A complex system might need several healing units placed in different locations. While I agree that in the short term, more fuctional units might be more effective than healing units, longer term and for systems that stretch over geography or even in space, then the multi nodal healing units might be necessary for 100% uptime. Think of the internet and routers. There is enough redundancy in the system that 1 or several boxes fail, it routes around. However in a more "mission critical" system, redundancy may not be practical. Healing systems need HW + SW to achieve optimum results.

1
0
Mushroom

At 6:14 pm today

Skynet will come on line for the first time

2
0
SBU

This has applications for space technology

Routing around damage from a cosmic ray, for example.

2
0
Alert

Re: This has applications for space technology

So are we on course for the first case of Chip Cancer then when this starts to go wrong?

0
0
Silver badge
Terminator

I predict

That the first application for these chips will be in robots to fight frickin' sharks with frickin' laser beams attached to their frickin' heads.

2
1
Joke

PETMC

People for the Ethical Treatment of Micro Chips... It's wrong to zap Chips with lasers... They (might) have feelings too!

0
0
Silver badge

Re: PETMC

Well if the chips respond to damaging stimuli by repairing themselves, then I guess that zapping the chip with a laser would make it feel pain that it had to respond to by rerouting its circuits.

Holy Crap! They are torturing those chips!

0
0
Bronze badge

Damage report!

Uh unfortunately sir the damage report machine has been damaged

0
0
Silver badge
Happy

Back in time

Just remembered, this was the central theme to "The Machine Stops".

0
0
Thumb Down

Marketing people working overtime

The chip doesn't heal itself, it's just more fault tolerant.

2
0
This topic is closed for new posts.